V Российская дистанционная олимпиада школьников ОТВЕТЫ

1. Лаборанту для анализа был выдан бесцветный кристаллический порошок, окрашивающий пламя газовой горелки в желтый цвет. **6,80** г порошка лаборант растворил в небольшом количестве воды и разделил полученный раствор на две равные части. При действии избытка раствора нитрата серебра на первую порцию раствора было получено **6,20** г светло-желтого осадка, частично растворяющегося в водном растворе аммиака. При пропускании избытка хлора через вторую порцию раствора удалось получить **2,05** г простого вещества. Что представляет собой исходное анализируемое вещество? Каков его качественный и количественный состав.

Анализируемое вещество представляет собой смеси NaCl (28,75 масс.%) и NaI (71,25 масс%). n – количество вещества NaCl в смеси, m – количество вещества NaX (X – бром или йод) в смеси), X – малярная масса галогена. Решаем систему уравнений:

(23+35,5)*n+(23+X)*m=6,80 Γ. (108+35,5)*n/2+(108+X)*m/2=6,20 Γ. 2X*m/4=2,05 Γ.

В результате находим: n=0.0334; m=0.0323; X=127 г/моль. X- йод.

Macca NaCl равна 1,955 г, масса NaI равна 4,845 г.

Ответ: Масовая доля NaCl равна 1,955:6,8=0,2875; массовая доля NaI равна 4,845:6,8=0,7125.

2. В замкнутом сосуде смешали водород, кислород и хлор. Плотность полученной газовой смеси по гелию равна **3,2375**. В смеси в **14** раз больше водорода, чем хлора (по объему). Смесь газов взорвали и охладили. Определите состав (в масс.%) полученного раствора.

Возьмем 1 моль исходной смеси. Молярная масса этой смеси равна M(смеси)=3,2375*4=12,95 г/моль и равна ее массе. Количество вещества Cl_2 обозначим \mathbf{x} моль, O_2 - \mathbf{y} моль, H_2 - $\mathbf{14x}$ моль. Составляем систему уравнений:

$$x + 14x + y = 1$$

 $71x + 2*14x + 32y = 12,95$

Решая уравнения, находим: \mathbf{x} = \mathbf{n} (Cl₂)=0,05 моль, \mathbf{y} = \mathbf{n} (O₂)=0,25 моль, $\mathbf{14x}$ = \mathbf{n} (H₂)=0,7 моль.

После взрыва образуется 0,5 моль воды, 0,1 моль HCl. В остатке - 0,15 моль непрореагировавшего водорода.

Масса раствора равна 18*0.5 + 36.5*0.1 = 9.0 + 3.65 = 12.65 г.

Ответ: Массовая доля HC1 равна 3,65:12,65=0,2885 (**28,85** %). Массовая доля воды составит **71,15** %.

3. В **3** литрах насыщенного при **293** К водного раствора фосфата натрия плотностью **1,06** г/мл содержится **6,3** моль ионов натрия. Рассчитайте, какую массу кристаллогидрата фосфата натрия, содержащего **12** молекул воды, можно растворить при этой температуре в **130** г раствора с массовой долей фосфата натрия, равной **3,00** %.

Молярные массы фосфата натрия и его кристаллогидрата равны 164 и 380 г/моль соответственно. Масса 3 л насыщенного раствора фосфата натрия равна 3*1,06=3,18 кг.

Количество вещества в этом растворе составляет 6,3:3=2,1 моль или 2,1*164=344,4 г Na_3PO_4 .

Массовая доля безводной соли в насыщенном растворе равна $W(Na_3PO_4)=344,4/3180=0,1083$.

В 130 г 3 масс. % раствора фосфата натрия содержится 130 · 0,03 = 3,90 г соли.

Примем за X – количество вещества кристаллогидрата $Na_3PO_4*12H_2O$, которое можно растворить в $130\ r$ 3% раствора. Составляем уравнение:

$$(3,9+164X)/(130+380X)=0,1083,$$

решая которое получаем X=0,08287 моль, что составляет 380 0,08287=**31,49** г кристаллогидрата.

Ответ: 31,49 г Na₃PO_{4*}12H₂O.

4. Характеристики бинарных соединений **I, II** и **III**, , которые содержат один и тот же элемент **A** и элементы **X, Y** и **Z** представлены в таблице.

Соединение	Химическая формула	Общее число атомов в 5,00 г соединения
I	AX_3	6,88 10 ²²
II	AY_3	6,65 10 ²²
III	AZ_3	$2,34 \ 10^{22}$

Установите формулы веществ **I, II** и **III**. Элемент X находится в пятой группе периодической системы элементов Д.И. Менделеева.

В таблице приведены результаты расчетов количества вещества и молярных масс соединений.

Соед инен ие	Химическая формула	Количество вещества (моль)	Молярная масса (г/моль)	Полученная формула вещества
I	AX_3	0,688/6,02 = 0,0286	5 / 0,0286 = 175	CsN ₃ (азид цезия)
II	AY ₃	0,665/6,02 = 0,0275	5 / 0,0274 = 182	CsO ₃ (озонид цезия)
III	AZ_3	0,234/6,02 = 0,00972	5 / 0,00972 = 514	$Cs[I(I_2)]$ (трийодид цезия)

Поскольку элемент X находится в V группе, единственным подходящим вариантом является A=Cs, X=N. Поскольку цезий входит в состав всех соединений с учетом молярных масс получаем AY_3 = CsO_3 , а AZ_3 = CsI_3 .

Otbet: CsN_3 , CsO_3 , a $AZ_3 = CsI_3$

- 5. Какие два вещества вступили в химическую реакцию и при каких условиях, если в ее результате получены следующие продукты (указаны без коэффициентов). Напишите уравнения этих реакций.
- $? + ?->KIO_3 + Cl_2$
- $? + ?->NaCl + S + SO_2 + H_2O;$
- $? + ?->CaSO_4 + (NH_4)_2SO_4 + CO_2 + H_2O;$
- $? + ?->CuO + P_2O_5 + NO_2;$
- $? + ?->K_3[Fe(CN)_6] + H_2O$

Ответ:

$$I_2$$
+КСlO₃ $\xrightarrow{\text{реакция в твердой фазе}}$ KIO₃+ Cl₂

 $Na_2S_2O_3 + 2HCl = 2NaCl + SO_2 + S + H_2O$ (реакция в растворе)

 $CaCO_3 + 2NH_4HSO_4 = CaSO_4 + (NH_4)_2SO_4 + H_2O + CO_2$ (реакция в растворе)

$$5Cu(NO_3)_2 + 2P \xrightarrow{\qquad \qquad t} 5CuO + P_2O_5 + 10NO_2$$

$$H_3[Fe(CN)_6]_{(\text{кристал.})} + 3KOH_{(\text{раствор})} = K_3[Fe(CN)_6] + 3 H_2O$$
 { $2K_4[Fe(CN)_6] + H_2O_2 = 2K_3[Fe(CN)_6] + 2KOH$ (реакция в растворе) }

6. Бесцветный удушливый газ A (25°C, 1 атм) сожгли в избытке кислорода. В результате было получено единственное газообразное вещество B, объем которого при тех же внешних условиях оказался в три раза больше объема газа A. Газ A растворяется в воде с образованием истинного раствора, имеющего кислую реакцию. После кипячения раствор сохраняет кислую реакцию, но на его нейтрализацию расходуется в два раза меньше щелочи, чем на нейтрализацию раствора до его кипячения. Определите химические формулы веществ A и B и напишите уравнения всех протекающих химических реакций.

Ответ: A – «недокись углерода» C_3O_2 , \overline{b} – CO_2 .

Уравнения реакций:

$$C_3O_2 + 2O_2 \xrightarrow{t} 3CO_2$$

$$O=C=C=C=O+2H_2O=HOOC-CH_2-COOH$$

$$HOOC - CH_2 - COOH + 2NaOH = NaOOC - CH_2 - COONa + 2H_2O$$

$$HOOC-CH_2-COOH \xrightarrow{t(кипячение раствора)} CH_3COOH+CO_2$$

 $CH_3COOH + NaOH = CH_3COONa + H_2O$

7. 0,243 моль смеси двух изомерных углеводородов обработали раствором брома в четыреххлористом углероде. После удаления растворителя и избытка брома масса остатка составила **44,41** г, а массовая доля брома как элемента в нем равна **54,04** %. Определите структурные формулы изомеров, если известно, что каждый из них содержит только один тип sp³-гибридных атомов углерода (только первичные, вторичные или третичные).

В результате реакции присоединилось 44,41*0,5404=24,0 г брома или 0,15 моль Br₂. Поскольку количество вещества изомеров больше количества вещества брома, в смеси присутствуют два изомера, принадлежащие к различным классам – алкен и циклоалкан.

Молярная масса углеводорода M = [44,41 - (44,41*0,5404)]/0,243 = 84 г/моль/.

Формулы углеводородов C_6H_{12} : **2,3-диметил-2-бутен** и **циклогексан.**

В обоих углеводородов все sp³ гибридизованные атомы углерода одинаковы

Ответ:

8. В результате гидролиза трипептида была получена смесь двух аминокислот и двух дипептидов. Массовые доли азота и кислорода в одной из аминокислот составляют 9,52% и 43,54% соответственно, а в другой -7,73% и 26,52%. Определите возможное строение трипептида, если известно, что отношение молярных масс дипептидов 1,1667:1.

Схема гидролиза трипептида:

$$X-Y-z$$
 $X-Y+Z$ $Y-z+X$

В конечной смеси две концевые аминокислоты. Рассчитываем их молярные массы:

 M_z =14:0,0952= 147 г/моль. M_x =14:0,0773= 191 г/моль.

В первой из них на каждый атом азота приходится четыре атома кислорода (147*0,4354:16=4), что при молярной массе 147 г/моль соответствует **аминоглутаровой** (**глутаминовой**) кислоте (**Glu**). Для второй кислоты на каждый атом азота приходится три атома кислорода (181*0,2625:16=3), что при молярной массе 181 г/моль соответствует **тирозину** (**Туг**).

$$HO_2C$$
 CO_2H
 HO_2C
 Tvr

Установим состав центральной аминокислоты на основании масс дипептидов. Если ее молекулярная масса M г/моль, то выполняется соотношение (M+181-18)/(M+147-18)=1,1667, откуда M=75 г/моль, что соответствует глицину , NH_2CH_2COOH (Gly).

Поскольку глицин занимает центральную позицию, исходный трипептид имел одно из двух возможных строений:**Tyr-Gly-Glu** или **Glu-Gly-Tyr**.

9. Продукт некаталитического восстановления **0,1** моль ароматического углеводорода окислили при длительном нагревании подкисленным раствором перманганата калия. Объем газа выделившегося в этой реакции, составил **4,48** л (н.у.). По окончании реакции окисления в полученном растворе было обнаружено только одно органическое соединение — одноосновная карбоновая кислота с массовой долей кислорода, равной **53,33**%. Определите строение исходного углеводорода и продукта его восстановления, если известно, что масса продукта восстановления в **1,0256** раз больше массы исходного соединения.

Молярная масса карбоновой кислоты M=2*16/0,5333=60 г/моль – уксусная кислота. Соотношение $CH_3COOH:CO_2=1:2$.

При восстановлении углеводородов атомы водорода переносятся парами: $X + nH_2 = XH_{2n}$. В результате получаем (X+2n)/X=1,0256, откуда X=78,1n г/моль.

Таким образом, углеводород — **бензол**, а продукт его восстановления (например, по Берчу) — **циклогексадиен-1,4**. Последний при окислении в качестве промежуточного продукта дает малоновую кислоту, которая распадается с образованием равных количеств оксида углерода(IV) и уксусной кислоты.

Ответ: бензол, циклогексадиен-1,4.

10. Какие вещества и при каких условиях вступили в химические реакции, если в результате были получены следующие продукты? Напишите уравнения этих химических реакций.

$$\begin{array}{c} \longrightarrow \text{ CH}_3\text{CH}_2 - \text{C} \equiv \text{CK} + 2 \text{ NH}_3 + \text{KBr} \\ \longrightarrow \text{CH}_3\text{CH} = \text{CHCH}_3 + \text{CH}_4 + \text{MgBr}_2 \\ \longrightarrow \text{C}_6\text{H}_6 + \text{Na}_2\text{CO}_3 \\ \longrightarrow \text{5 CO}_2 + 6 \text{ MnSO}_4 + 3 \text{ K}_2\text{SO}_4 + 19 \text{ H}_2\text{O} \\ \longrightarrow & \bigcirc \\ \bigcirc \\ \square \\ \longrightarrow & \square \\ \end{array}$$

Ответ:

a)
$$CH_3$$
— CH_2 — $CHBr$ = $CH_2 + 2 KNH_2 \xrightarrow{t} CH_3$ — CH_2 — C = $CK + 2NH_3 + KBr$.

б)
$$CH_3$$
— CH_2 — $CH(Br)$ — $CH_3 + CH_3MgBr$ — t — CH_3 — CH == CH — $CH_3 + CH_4 + MgBr_2$ Реактив Гриньяра

в)
$$C_6H_5COONa$$
 (кристал.) + NaOH (кристал) \xrightarrow{t} $C_6H_6 + Na_2CO_3$

$$\Gamma$$
) 6KMnO₄ + 9H₂SO₄ + 5CH₃OH = 5 CO₂ + 6MnSO₄ + 3K₂SO₄ + 19H₂O (реакция в растворе)

д) Реакция Дильса – Альдера (протекает при нагревании):