Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

Программа вступительных испытаний для выпускников СПО по дисциплине «Биохимия»

Направление подготовки

19.03.01 «Биотехнология»

1. Аннотация

Разработанная программа вступительных испытаний предназначена для подготовки абитуриентов, имеющих среднее профессиональное образование, к поступлению в ФГБОУ ВО «Российский химикотехнологический университет имени Д.И. Менделеева» для обучения по направлению 19.03.01 «Биотехнология».

Программа вступительных испытаний для абитуриентов, имеющих среднее профессиональное образование, предназначена для подготовки к тестированию по дисциплине биохимия, которое является альтернативой вступительным испытаниям в формате ЕГЭ для абитуриентов, освоивших программу среднего общего образования. Программа может быть использована при наличии базовых знаний по общей, неорганической и органической химии, аналитической и физической химии, общей биологии.

Программа вступительных испытаний составлена в соответствии с требованиями, предъявляемыми к абитуриентам, поступающим на направление подготовки бакалавров 19.03.01 «Биотехнология», и накопленным опытом преподавания дисциплин на кафедре биотехнологии РХТУ им. Д.И. Менделеева.

2. Содержание разделов дисциплины «Биохимия»

Раздел 1. Введение в предмет.

История изучения биомолекул. Возникновение и развитие биохимии как науки. Связь "Биохимии" с другими дисциплинами. Биомолекулы, их особенности и значение для жизнедеятельности организмов. Иерархия молекулярной организации клетки и многоклеточного организма.

Раздел 2. Аминокислоты и их производные, пептиды, белки.

- 2.1. Аминокислоты. Химическое строение, оптическая изомерия, химические и физико-химические свойства, биологическая роль в организме, производные аминокислот.
- 2.2. Пептиды и белки. Химическое строение и пространственная организация, характеристики пептидной связи. Химические и физико-химические свойства белков и их растворов, многообразие биологических функций белков и пептидов. Примеры белков и пептидов, их функции: инсулин, гемоглобин, коллаген, иммуноглобулины и др.

Раздел 3. Ферменты.

- 3.1. Природа ферментов. Классификация ферментов по типу катализируемых ими реакций, основные свойства ферментов как белков и биокатализаторов. Сравнение ферментов с химическими катализаторами.
- 3.2. Коферменты, простетические группы, кофакторы ферментов. Витамины, связь с ферментами, их биологическая роль и биохимическая функция.

Раздел 4. Нуклеотиды и нуклеиновые кислоты.

- 4.1. История открытия и изучения нуклеиновых кислот.
- 4.2. Пиримидиновые и пуриновые основания, нуклеотиды и нуклеозиды. Биологические функции нуклеотидов и их производных в организме.
- 4.3. Нуклеиновые кислоты, ДНК и РНК, их химическая и пространственная структуры. Виды ДНК и РНК в клетках прокариот и эукариот, их биологические функции.
- 4.4. Понятие об основных процессах, происходящих с участием нуклеиновых кислот и нуклеотидов в живых организмах. Матричные биосинтезы в клетке: репликация, транскрипция, трансляция, особенности процессов у про- и эукариот. Понятие гена в молекулярно биологических терминах.

Раздел 5. Углеводы и их производные.

- 5.1. Классификация углеводов, химическое и пространственное строение основных моносахаридов. Биохимические функции моносахаридов.
- 5.2. Основные олиго и полисахариды, их строение и биологические функции.
- 5.3. Понятие о метаболизме. Ката- и анаболизм.
- 5.4. Основные процессы, происходящие с углеводами в клетке животного и растительного типа. Биоэнергетика. Гликолиз, брожение, цикл лимонной кислоты, клеточное дыхание. Роль митохондрий в метаболизме. Фотосинтез.

Раздел 6. Липиды и их производные.

- 6.1. Разнообразие липидных веществ. Особенности строения и классификация липидов.
- 6.2. Простые и сложные липиды. Биологические функции, выполняемые различными типами липидов. Структурные фрагменты липидов: жирные кислоты и их производные.
- 6.3. Химические и физико-химические свойства липидов.
- 6.4. Биологические мембраны, их строение и функции. Липиды биологических мембран.
- 6.5. Неомыляемые липиды и производные липидов, их биологические функции (жирорастворимые витамины, простагландины, желчные кислоты, половые гормоны, кортикостероиды и др.).

3. Вопросы для подготовки к вступительным испытаниям по дисциплине «Биохимия».

- 1. Биохимия как наука: предмет, объекты и методы изучения, масштабы изучаемого и связь с другими дисциплинами.
- 2. Биомолекулы и их классификация.
- 3. Аминокислоты: номенклатура, классификация и строение протеиногенных аминокислот.

- 4. Важнейшие биохимические реакции с участием аминокислот. Производные аминокислот и их значение.
- 5. Пептиды, особенности строения, характеристики пептидной связи и биологическая роль.
- 6. Природные пептиды и их функции. Примеры регуляторного действия пептидов.
- 7. Белки: классификация и физико-химические свойства.
- 8. Химическое строение и пространственная организация: первичная, вторичная, третичная и четвертичная структуры белков.
- 9. Многообразие биологических функций белков. Примеры белков и их функций.
- 10. Ферменты. Природа ферментов, их строение, состав.
- 11. Классификация ферментов по типу катализируемых ими реакций.
- 12. Основные свойства ферментов как белков и биокатализаторов.
- 13. Коферменты, простетические группы, кофакторы, витамины, их биологическая роль.
- 14. Пиримидиновые и пуриновые основания, нуклеотиды и нуклеозиды, их свойства.
- 15. Биологические функции нуклеотидов и их производных в организме.
- 16. Нуклеиновые кислоты: ДНК и РНК, их химическая и пространственная структуры, свойства.
- 17. Виды ДНК и РНК в клетках прокариот и эукариот, их биологические функции.
- 18. Понятие об основных процессах, происходящих с участием нуклеиновых кислот и нуклеотидов в живых организмах.
- 19. Матричные биосинтезы в клетке. Общее представление, условия протекания, отличие от других ферментативных реакций.
- 20. Репликация уникальный матричный биосинтез, его механизам и значение.

- 21. Транскрипция как матричный биосинтез и процесс реализации генетической программы.
- 22. Понятие гена в молекулярно биологических терминах.
- 23. Трансляция как процесс перехода от гена к признаку. Строение и функции рибосомы.
- 24. Углеводы: классификация, особенности строения, изомерия пространственная и структурная.
- 25. Строение, свойства и биологическая роль моно-, ди- и полисахаридов.
- 26. Понятие о биоэнергетике. Виды организмов по усвоению энергии, макроэрги и их роль в биохимических реакциях.
- 27. Понятие об основных процессах, происходящих с участием углеводов в живых организмах.
- 28. Катаболизм гексоз: гликолиз.
- 29. Анаэробные процессы образования энергии (гликолиз и различные виды брожения).
- 30. Аэробные стадии катаболизма глюкозы, цикл лимонной кислоты.
- 31. Процесс окислительного фосфорилирования: дыхательная цепь и механизм синтеза ATФ.
- 32. Фотосинтез, стадии, реакции, локализация процесса. Экологическая роль.
- 33. Особенности строения и классификация липидов.
- 34. Простые (жиры, жирные спирты и воска) и сложные липиды: строение и функции.
- 35. Жирные кислоты и их производные, химические и физико-химические свойства.
- 36. Строение мембран. Липиды биологических мембран их физико-химические свойства. Связь свойств с биологической функцией.
- 37. Неомыляемые липиды и производные липидов, их биологические функции.

- 38. Понятие об основных процессах, происходящих с участием липидов и их производных в живых организмах.
- 39. Холестерин и его функции в организме.
- 40. Производные липидов регуляторы биологических процессов: гормоны (простаг-ландины, половые гормоны, кортикоиды), витамины А, Д, Е, К.

4. Рекомендуемая литература

А) Основная литература:

- 1. Биохимия / под ред. Е.С. Северина. М., ГЭОТАР-МЕД, 2009.
- 2. Ершов Ю. А., Зайцева Н. И. Биохимия: учебник и практикум для среднего профессионального образования. М., Издательство Юрайт, 2020. 323 с.
- 3. Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., МАИК «Наука-Интерпериодика», 2002. 445 с.

Б) Дополнительная литература

- 1. Нельсон Д., Кокс М. Основы биохимии Ленинджера. В 3-х томах. Том 1. Основы биохимии, строение и катализ. М., Лаборатория знаний, 2020. 694 с.
- 2. Нельсон Д., Кокс М. Основы биохимии Ленинджера. В 3-х томах. Том 2. Биоэнергетика и метаболизм. М., Лаборатория знаний, 2020. 636 с.
- 3. Нельсон Д., Кокс М. Основы биохимии Ленинджера. В 3-х томах. Том 3. Пути передачи информации. М., Лаборатория знаний, 2020. 444 с.