Резюме проекта, выполняемого

в рамках ФЦП

«Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2014 – 2020 годы»

по этапу № 2

Номер Соглашения о предоставлении субсидии: 14.574.21.0150

Тема: «Разработка нового накопителя электроэнергии на основе бромно-органической проточной редокс-батареи»

Приоритетное направление: Энергоэффективность, энергосбережение, ядерная энергетика (ЭЭ)

Критическая технология: Технологии новых и возобновляемых источников энергии, включая водородную энергетику

Период выполнения: 26.09.2017 - 30.06.2020

Плановое финансирование проекта: 75.00 млн. руб.

Бюджетные средства 60.00 млн. руб.,

Внебюджетные средства 15.00 млн. руб.

Получатель: федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химикотехнологический университет имени Д.И. Менделеева"

Индустриальный партнер: Общество с ограниченной ответственностью «Корпорация Связи»

Ключевые слова: Бромно-органическая полимер-электролитная редокс-батарея, мембранно-электродный блок, долгосрочное хранение электроэнергии, хинон-гидрохинонная редокс-пара, бром-бромидная редокс-пара

1. Цель проекта

Основная задача проекта — это поиск и разработка новых накопителей электроэнергии, способных запасать излишки электроэнергии, как на месте генерации или в промежуточных узлах электросетей, так и непосредственно у потребителя. Актуальность создания таких аккумуляторов особенно возрастает в связи с развитием возобновляемой энергетики — ветряных и солнечных электростанций, работа которых зависит от погодных условий.

Целью проекта является разработка принципов и оптимизация условий функционирования нового накопителя электроэнергии на основе бромно-органической проточной редокс-батареи.

2. Основные результаты проекта

В рамках проекта были проведены работы по созданию экспериментального образца бромно-органической проточной редоксбатареи, а также соответствующие испытания указанного образца, в качестве материалов электродов для которого были выбраны моноуглеродные материалы, в качестве мембраны - использована мембрана Nafion производства Dupont. По собранным и проанализированным данным в рамках проекта были подготовлены 3 научные публикации и три заявки на полезную модель РФ, несколько докладов на ведущих конференциях РФ. За счет средств Индустриального партнера ООО «Корпорация Связи» проведен широкий ряд мероприятий по материально-техническому обеспечению проекта на общую сумму более 10 млн руб.

Выполненный в рамках проекта аналитический обзор современной научно-технической, нормативной и методической литературы показал, что технология проточных бромно-органических редокс-батарей - это перспективное решение для создания новых накопителей электроэнергии. По собранным и проанализированным данным установлено, что растворы 1М антрахинондисульфокислоты и HBr/Br2 способны обеспечить высокую разрядную мощность и эффективную перезарядку разрабатываемого устройства, тогда как плотность хранимой энергии целесообразно повысить за счет использования бромбромидной редокс-пары. Таким образом, предлагаемая в рамках проекта концепция проточной редокс батареи обладает весьма высоким коммерческим прикладным потенциалом.

3. Охраноспособные результаты интеллектуальной деятельности (РИД), полученные в рамках прикладного научного исследования и экспериментальной разработки

Патент РФ (Полезная модель) «Устройство испытательной ячейки» № 181456, 2018 г.

Поданы две заявки на полезные модели РФ:

Заявка на полезную модель РФ №2018128285 от 02.08.2018 «Устройство спектрофотометрической проточной кюветы»; Заявка на полезную модель РФ №2018139892 от 13.11.2018 «Устройство для измерения кроссовера электроактивных веществ через мембрану»;

4. Назначение и область применения результатов проекта

Разработанный прототип накопителя электроэнергии на основе бромно-органической проточной редокс-батареи может быть использован для запасания электроэнергии, как на месте генерации, так и в узлах потребителей энергосетей. Особенно актуально его применение приложительно к технологиям новых возобновляемых источников энергии, включая водородную энергетику.

5. Эффекты от внедрения результатов проекта

Необходимость постоянного уравновешивания генерации и потребления электроэнергии является важнейшей проблемой современной электроэнергетики. Существует несколько подходов к ее решению — использование избыточных электрогенерирующих мощностей, стимулирующих ночных тарифов, — но самый перспективный и технологичный из них — это использование промышленных накопителей энергии. Наиболее обещающие среди них в свою очередь считаются электрохимические накопители на основе проточных редокс-батарей (ПРБ). Бромно-органическая ПРБ, разрабатываемая в проекте, будучи внедрённой в современные энергосети заметно повысит их энергоэффективность и может выполнять энергосберегающие функции, как на стадии генерации электричества, так и на стадии его потребления.

6. Формы и объемы коммерциализации результатов проекта

На основе полученных в рамках работы результатов интеллектуальной деятельности к концу проекта планируется целиком подготовить технологию создания электрохимических накопителей энергии на основе бромно-органических ПРБ, которая впоследствии поможет выпустить на рынок готовый продукт – новый накопитель электроэнергии. Такой продукт и является основным объектом будущей коммерциализации проекта.

7. Наличие соисполнителей		
Соисполнители отсутствуют.		
федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химикотехнологический университет имени Д.И. Менделеева"		
Ректор		Мажуга А.Г.
(должность)	(подпись)	(фамилия, имя, отчество)
Руководитель работ по проекту		
Профессор		Воротынцев М.А.
(должность)	(подпись)	(фамилия, имя, отчество)
М.П.		