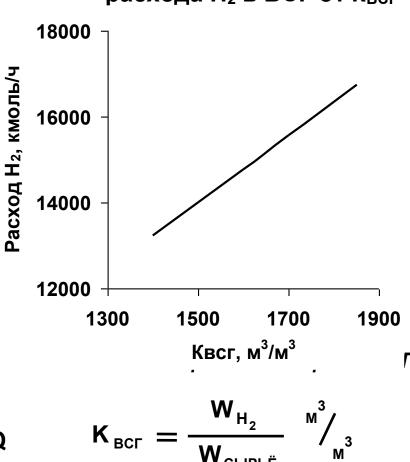
ВЫБОР КРАТНОСТИ ЦИРКУЛЯЦИИ ВСГ ДЛЯ УСТАНОВКИ КАТАЛИТИЧЕСКОГО РИФОРМИНГА

СХЕМА ХИМИЧЕСКИХ РЕАКЦИЙ РИФОРМИНГА

- дегидрирование нафтенов

$$C_nH_{2n}$$
 \longrightarrow C_nH_{2n-6} + H_2 - Q нафтены

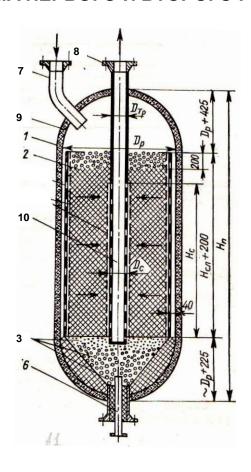
- дегидроциклизация парафинов


$$C_nH_{2n+2} \longrightarrow C_nH_{2n} + H_2 - Q$$

– гидрокрекинг нафтенов $C_nH_{2n} + H_2 \longrightarrow CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12} + C_5H_{12}$ нафтены

- гидрокрекинг парафинов

$$C_nH_{2n+2} + H_2 \longrightarrow CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12} + Q$$
 парафины


Изменение расхода H₂ в ВСГ от К_{всг}

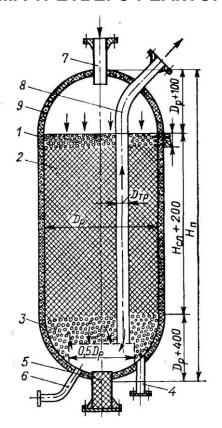

CXEMЫ PEAKTOPOB

СХЕМА ПЕРВОГО И ВТОРОГО РЕАКТОРОВ

СХЕМА ТРЕТЬЕГО РЕАКТОРА

- 1 корпус; 2 катализатор;
- 3 шарики фарфоровые;
- 4 люк для выгрузки катализатора;
- 5 люк;
- 6 штуцер для эжекции газов;
- 7 штуцер для входа сырья;
- 8 штуцер для выхода продуктов реакции;
- 9 футеровка;
- 10 перфорированная труба

Размеры реакторов для К_{ВСГ} 1700 м³/м³

Таблица 1

№ реактора	масса катализатора, т	высота слоя катализатора, м	диаметр аппарата, м	
1	12,6	5,4	2,4	
2	25,3	6,7	3,0	
3	50,5	14,2	4,6	

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ БЛОКА КАТАЛИТИЧЕСКОГО РИФОРМИНГА В КРАСНОДАРСКОМ КРАЕ:

- ПРОИЗВОДИТЕЛЬНОСТЬ РЕАКЦИОННОГО БЛОКА ПО СЫРЬЮ 3971 Т/СУТ.;
- ТЕМПЕРАТУРА ПОДАЧИ СЫРЬЯ И ЦИРКУЛИРУЮЩЕГО ГАЗА В ПЕРВЫЙ РЕАКТОР 807 К.;
- ДАВЛЕНИЕ 3-4 МПА;
- ОБЪЕМНАЯ СКОРОСТЬ ПОДАЧИ СЫРЬЯ 1,5 М³/М³;
- РАСПРЕДЕЛЕНИЕ КАТАЛИЗАТОРА ПО РЕАКТОРАМ 1 : 2 : 4.

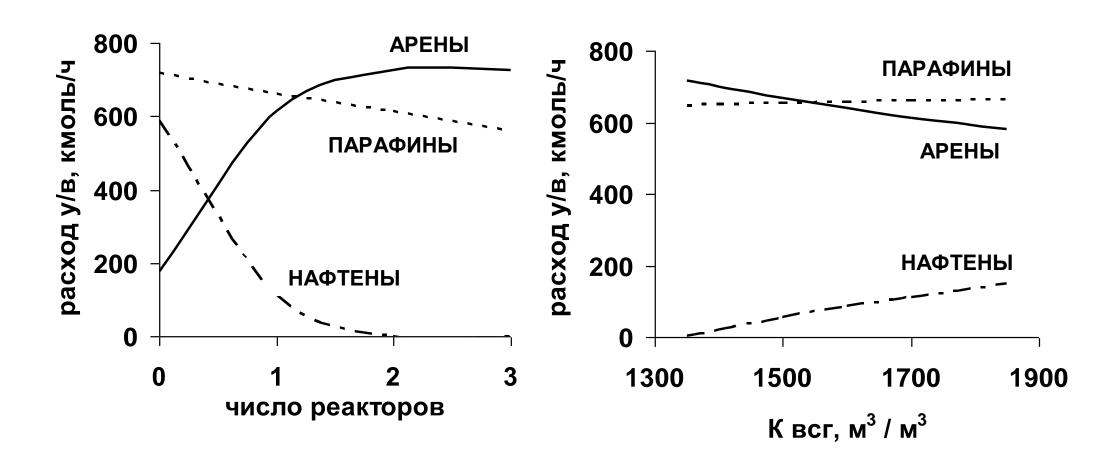
Состав сырья

Таблица 2

Относительная плотность, г/см ³	Фракционный состав				В	Углеводородный состав, мас.%			
	H.K.	10%	50%	90%	K.K.	АРЕНЫ	НАФТЕНЫ	ПАРАФИНЫ	
0,7483	103	109	119	147	172	11	39	50	

Состав циркулирующего газа (ВСГ)

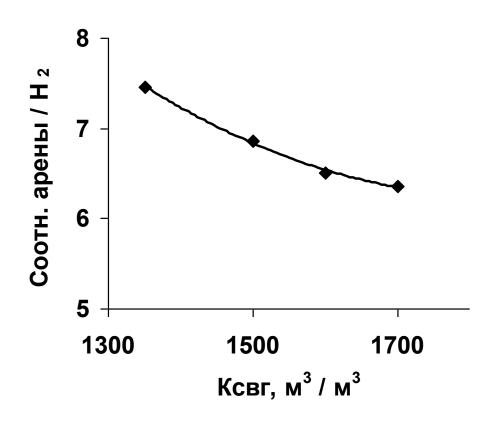
Таблица 3


Компоненты	H ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂
Содержание, об. %	86	4	5	3	1	1

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕАКТОРНОГО БЛОКА

- 1. Выбор основных параметров расчета:
 - а. производительность по сырью,
 - b. температура подачи сырья и ВСГ;
 - с. давление;
 - d. объемная скорость подачи сырья;
 - е. распределение катализатора по реакторам;
- 2. Выбор кратности циркуляции ВСГ;
- 3. Расчет мольного состава питания реактора и циркулирующего газа;
- 4. Расчет количества катализатора и его распределение по реакторам;
- 5. Расчет реакторов:
 - а. материальный баланс реактора;
 - **b.** тепловой баланс реактора;
 - с. определение основных размеров;

Изменение состава продуктов по реакторам при К_{ВСГ} 1700 м³/м³


Изменение состава продуктов от К _{всг} для 1 реактора

Распределение температур по реакторам при $K_{BC\Gamma} = 1700 \text{ m}^3/\text{m}^3$

Соотношение количества аренов в риформате к водороду в ВСГ

